A networking resource devoted to biological soil crusts and the researchers who study them. We will provide a means for international scientists to communicate, share their research, share important news and announcements, ask questions and find collaborators. We will also provide a space for informal writing on research, opinion, and ideas (now seeking posters!).
Showing posts with label mosses. Show all posts
Showing posts with label mosses. Show all posts

Tuesday, January 14, 2014

Syntrichia clone library



This is the beginnings of our new culture collection of Syntrichia, established by Kyle Doherty. Eventually, we'll have roughly 50 populations each for S. ruralis and S. caninervis growing from all over the Colorado Plateau.

Friday, October 25, 2013

Biocrusts of Northern Arizona National Monuments Post 5: Sunset Crater National Monument

Typical conditions in Sunset Crater National Monument. a) Landscape view, showing open ponderosa pine forest and cinder-covered interspaces. b) A patch of the moss Ceratodon purpureus associated with organic matter. c) A typical cinder-covered interspace with little soil development.n



Sunset Crater-Soil development at Sunset Crater is rather minimal due to the recent geological origin of the parent materials. Areas with particle size distributions less than 2mm can be found, but are quite rare. Therefore, we did not extend our models to Sunset Crater due to the paucity of biocrust habitat. Survey crews did occasionally observe patches of moss cover, mostly Ceratodon purpureus, often associated with organic matter enrichment (Figure 9b). There was no observation of any cyanobacterial development on these sites, and only very minimal cover of the soil lichen Cladonia (note: rock lichens are quite abundant however). Interestingly, extensive moss cover was observed adjacent to the road possibly due to a N-sloping roadcut.


This is the latest in a series, see here for a lichen key, here for a moss key, here for a description of Walnut Canyon biocrust, here for a description of Wupatki biocrust.


Tuesday, October 1, 2013

Moss Plants and More: Two Structures, One Set of Genes

Moss Plants and More: Two Structures, One Set of Genes: When presented with a problem it is typically easier to solve it with tools at your disposal rather than inventing something new. This is al...

Tuesday, September 24, 2013

Biocrust data repository

Preface: After a quick glance at the Maestre lab blog, I see they have added links to datasets deposited for public use on Dryad. Good idea. In fact I need to make some old data available myself, the only reason I haven't being that I'd have to sit down and document metadata (yuck!) and make sure the data was easy for someone else to use and I have so much other shit to do in every waking minute that it just hasn't been done. One day....be patient. In the meantime, thanks to Fernando & Co. for showing us how we should be operating.

It occurs to me that there ought to be a single place where someone could go an find links to datasets containing some form of biocrust data, and that this blog is the perfect launching pad. I'll have to think about a nice, more permanent way to do it, but in the meantime it occurs to me I can do it as a simple blog post that I will permalink on the top bar. It will be called Biocrust Data Repository just like this post (do you see it up there?), and I will periodically update it with your help. If you want a link to a dataset posted, leave a comment. You'll have to deposit the data somewhere such as Dryad or your own website, and I will link to the URL that you provide.

Dryad
This is the most widely used repository for data. Here's a search for the term "biological soil crust".

Figshare
This is a widely used repository for figures, presentations, and in some cases datasets. Here's a search for the term "biological soil crust".

Specific data resources (check back for updates)
Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems:insights from a Mediterranean grassland. Plant and Soil 333:21-34.




Escolar C, Martinez I, Bowker MA, Maestre FT (2012) Warming reduces the growth and diversity of biological soil crusts in a semi-arid environment:implications for ecosystem structure and functioning. Philosophical Transactions of the Royal Society B 367: 3087-3099.

Maestre FT, Puche MD (2009) Indices based on surface indicators predict soil functioning in Mediterranean semi-arid steppes. Applied Soil Ecology 41:342-350.

Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Brab H (2015) Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts. Methods in Ecology and Evolution http://dx.doi.org/10.1111/2041-210X.12459


To submit a link to an archived dataset, please leave a comment with the original paper citation (if applicable) and a link to where the data can be downloaded.



Sunday, September 22, 2013

Species of concern on the Colorado Plateau: Mosses & Lichens

Preface: nearly a decade ago I was asked to contribute to a book about species of concern in the Colorado Plateau ecoregion focusing on all taxa. I drafted up a section about mosses and lichens, focusing on gypsiferous species of biocrusts, which is a rare habitat. There are no federally listed mosses or lichens, not because they don't exist, but rather because the Endangered Species Act categorically excludes them. 

I asked Roger Rosentreter (lichenologist), and Lloyd Stark (bryologist) for tips on other non-gypsiferous species I ought to mention. 

Having heard nothing about the book in many years, I think I can assume the project is dead. In the meantime, I reckon its more useful here than on an old hard drive in an obsolete file format. I've supplemented it with links to images from the web, if they exist.

Regarding status, vulnerable means that it could conceivably be extirpated. For example rarity of habitat would render something vulnerable. At risk refers to a vulnerable species that is threatened by a stressor. 




MOSSES AND LICHENS OF GYPSIFEROUS SOILS

NODULE CRACKED LICHEN

Status in region: At risk

Status elsewhere: At risk in the Americas

DESCRIPTION ~ Nodule cracked lichen was first encountered in the Americas in the mid-1980's, and has been found to be locally common species confined to the gypsiferous soils of the Colorado Plateau. Although it is has a widespread distribution around the world, its preference for a very rare habitat type in North America makes it a species of concern. This lichen is composed of many scales of ~3-5 mm diameter with lobed margins. Generally the appearance of the lichen is white due to a covering of oxalate salts, but the thallus underneath is actually pale brown. It has black fruiting bodies immersed in the thallus that lack any kind of rim around them. Colonies are irregularly shaped and generally less than 5 cm in diameter.

Vulnerability Factors: Habitat specialist, restricted range

NEVADA GYPSUM MOSS

Status in Region: At risk

Status in other regions: At risk

DESCRIPTION~ This rare moss was recently described in 1995 as a result of morphologically well-developed collections made during California bearpoppy studies. Nevada gypsum moss appears to be a widely but sparsely distributed species of western North America, almost exclusively on gypsiferous soils. It is distinguished by other mosses of the same habitat by its lack of an awn (hair-like projection) on its leaf tips, and its dark green to black leaves that tend to spiral around the stem near the top. Its small stature (usually < 2mm tall) makes a handlens a must to observe these features. Many desert mosses have skewed sex ratios, but to date a male individual of this species has yet to be found making it one of the champions.

Vulnerability Factors: Habitat specialist, restricted range, possible low genetic diversity due to lack of sexual reproduction

DESERT CRATER LICHEN

Status in region: Vulnerable {EDITORIAL NOTE: THIS SPECIES IS QUITE ABUNDANT, EVEN DOMINANT IN A RARE HABITAT TYPE}

Status elsewhere: Widespread and stable


DESCRIPTION ~ Desert crater lichen is found on several continents but on the Colorado Plateau it is strongly restricted to the rare gypsiferous soils where large white populations can be visually impressive. This lichen forms rather large colonies often exceeding 5cm in diameter and is pure white. It tends to have a rugose, undulating surface and has large (~ 2mm) black fruiting bodies which are bowl shaped and sunken into the thallus surface like a crater. This species tends to have a very clumped distribution, so if you find some you are likely to find a lot.

Vulnerability factors: habitat specialist, restricted range

LARGELEAF GYPSUM LICHEN

Status in region: At risk

Status elsewhere: At risk globally

DESCRIPTION ~ Largeleaf gypsum lichen has been confusing lichenologists since the 1920's, and was not discovered in the US until 1990. Its unique fruiting body which grades into the vegetative thallus afforded it a designation as a new genus solely representing a new family, Gypsoplacaceae. It is a squamulose lichen with olive - tan squamules (scale-like mini thalli) usually about 0.5 - 1 cm in diameter. The fruiting bodies, when present, look like upraised brick red swellings on the squamules and may be irregular to dome shaped. Although fairly large in the soil lichen world, colonies are usually less than 5cm in diameter. This species is a rare one even within its specialized habitat which is also rare.

Vulnerability Factors: Low population density, habitat specialist, restricted range.

GYPSUM-LOVING RIM LICHEN

Status in region: At risk

Status elsewhere: At risk globally

DESCRIPTION ~ This lichen was unknown to science until collected in the San Rafael Swell in 1998, and has since been observed at scattered locations around the Colorado Plateau. Gypsum-loving rim lichen is chalky white to ashy gray and forms a tightly adhering crust on the soil surface. Its thallus (vegetative portion) is divided into small partitions called areoles. It bears black disk shaped fruiting bodies (1-2 mm dia.) with a white margin that are flush with or sitting slightly atop the thallus. A typical specimen is about 3 - 5 cm in diameter and irregularly shaped.

Vulnerability Factors: Habitat specialist, restricted range.



Habitat: These species are strongly restricted to arid and semi-arid sites with gypsiferous soils such as those derived from gypsum-bearing portions of the Carmel  Formation, the Paradox Formation, and the Moenkopi Formation (most of which occur at 5000 - 6500 ft). Such sites are found across southern Utah and in southwestern Colorado. They occur as components of the conspicuously well developed biological soil crusts generally found on these soils.

Threats and Concerns: On the Colorado Plateau, these species are endemic to an inherently rare habitat type, and are uncommon to rare within that habitat type even when undisturbed. Largeleaf gypsum lichen is a rare species even within this special habitat type. Most of the gypsum soils of the plateau are degraded to some extent by livestock activity and off road vehicle use, and truly undisturbed examples may be lacking. As population growth continues in the region, economical exploitation of the more pure gypsum deposits may occur to satisfy demand for products such as drywall. Gypsum areas are particularly popular with users of dirt bikes and all-terrain vehicles.

Conservation: When planning road and trail construction, gypsum areas should be avoided whenever possible. Enforcement of off-road vehicle regulations should be prioritized in these areas. Plant cover is poor on gypsum soils, therefore they offer relatively little forage value to livestock. Grazing of these fragile habitats could and should be phased out without creating major economic impacts. Because gypsiferous soils generally occur in relatively small patches, a network of small fenced reserves could potentially maintain the endemic biota.

Notes: Because several soil crust species and some vascular plant species are rare gypsum endemics, and gypsum soils cover very little area, it is practical and possible to conserve them all by conserving the habitat in small reserves. We thank Dr. Larry St. Clair of BYU for sharing his expertise on gypsiferous lichens, and Dr. Lloyd Stark of UNLV for information pertaining to Didymodon nevadensis.

OTHER MOSSES AND LICHENS OF CONCERN
LITTLE FRINGE MOSS
Crossidium seriatum

Status in region: Unknown

Status elsewhere: At risk globally

DESCRIPTION ~ This little fringe moss is an extremely rare western North American soil moss with a primarily hot desert distribution. It has never been collected in the Colorado Plateau but likely occurs in the more xeric portions, albeit very rarely. Although this species cannot be separated from lookalikes in the field, perhaps its best identifying characteristic is its extremely small size. A typical field specimen is frequently less than 0.5 mm tall and although it does generally have a white hairlike point on its leaf tips, it never appears as a white hairy cushion. With the naked eye, individuals look like little black dots.

Vulnerability Factors: Low population density, restricted range



Habitat: This moss occurs on sandy or gypsiferous soils of aridlands. Dr. Lloyd Stark suggests that this species is primarily centered around the gypsiferous soils near Lake Mead, thus its most likely habitat on the Colorado Plateau includes the more xeric gypsiferous substrates at the margins of the Colorado Plateau ecoregion such as those near St. George, Utah. Other possible localities include exposures of the Paradox formation in Cataract Canyon and adjacent side canyons.

Threats and concerns: Soil disturbances of various sorts are the most likely stressors: foot traffic, livestock grazing, and off road vehicles.

Conservation: Initially, the best strategy is simply to determine that the species does indeed occur on the Colorado Plateau so that the habitat characteristics can be better defined and stressors better identified. As a preemptive strategy, gypsiferous habit reserves should be developed as described previously. Fortunately, the most likely localities for this species happen to be in protected areas (Canyonlands National Park, and Glen Canyon National Recreation Area), but they could potentially be impacted by river users.

Entosthodon planoconvexus

Status in region: Vulnerable

Status elsewhere: Globally vulnerable

DESCRIPTION ~ This exceedingly rare moss is known on the Colorado Plateau from only one location in Canyonlands (deposited by the author at the National Park Service Southeast Utah Group's herbarium in Moab, Utah), and is known from only four other collections worldwide. Entosthodon planoconvexus is a short moss with rather large yellowish green leaves that are spreading when moist and shriveled when dry. Its sporophyte, when present, consists of an upside-down pear-shaped capsule borne on a reddish stalk.

Vulnerability factors: Low population density

Habitat: Because of its rarity, the habitat of this species is poorly defined although it tends to occur on dry soil at the base of rocks. The Canyonlands specimen grew in a dry sandy soil layer over rock and adjacent to a rock outcrop. It is an occasional associate of liverworts of the genus Targionia.

Threats and Concerns: The main concerns with Entosthodon planoconvexus are its naturally highly isolated small populations. Because it tends to grow in at least partially protected habitats, the population is likely stable, however stochastic events or disturbance could easily drive this species locally extinct. Livestock and recreation impacts are the most likely anthropogenic stressors of this species.

Conservation: It is difficult to recommend conservation strategies for this species without knowing what potential stressors are. Perhaps the best strategy is simply to determine where the species occurs so that the habitat characteristics can be better defined and stressors identified. Currently, bryophytes are not generally included in inventory and monitoring projects.

Notes: Dr. Lloyd Stark of UNLV provided helpful information on this species.



MINNESOTA ROCK LICORICE
Lichinella minnesotensis

Status in Region: Unknown

Status elsewhere: Possibly vulnerable in western North America

DESCRIPTION~ This rock licorice lichen is apparently a North American endemic with a primarily eastern distribution. There are some rather disjunct collections from the midwest and west including a single collection from near Kanab, Utah. This black lichen is composed of clumps of ascending convoluted lobes. It is jelly like and semi-transparent when wet. Colonies are generally only about 1 cm in diameter.

Vulnerability Factors: Isolated populations

Habitat: Minnesota rock licorice is found in shallow fissures or crevices on rock outcrops. The sole Colorado Plateau collection was from a limestone substrate of the Timpoweap member of the Moenkopi formation in Grand Staircase-Escalante National Monument. It is difficult to characterize the habitat characteristics of this species on the Colorado Plateau because only one collection has been made.

Threats and Concerns: It is unknown whether this species is threatened by anthropogenic forces, buts its rarity in the region suggest it is vulnerable. Fortunately, its habitat type affords considerable protection.

Conservation: It is difficult to recommend conservation strategies for this species without knowing what potential stressors are. Perhaps the best strategy is simply to determine where the species occurs so that the habitat characteristics can be better defined and stressors identified if they exist. Currently, lichens are not generally included in inventory and monitoring projects.

Notes: Dr. Roger Rosentreter of the BLM provided information on his Kanab-area collection of this species.

HAIRY MOUTH MOSS
Trichostonum sweetii

Status in region: Vulnerable

Status elsewhere: Globally vulnerable

DESCRIPTION ~ Hairy mouth moss is known from only three collections on the Colorado Plateau (one a dubious identification) and only a handful more from western North America where it is endemic. This is a fairly large moss for arid regions (up to 2cm tall) and is an inhabitant of shady crevices. It has large, narrow, bright green leaves (2-3 mm long) which are spreading and widest just below the apex.  They may occur as small tufts or scattered individuals mixed with other species.

Saturday, July 6, 2013

We may have joined a cult

Art: Kirsten Coe Ryder

I'm away on family business, so have no time for blogging. In the meantime, purely for your amusement.....Kyle Doherty, Troy Wood &  I may have joined some sort of bryophyte & booze cult.

But seriously folks, we're glad to be a part of the Syntrichia work group, and many thanks to Brent Mishler for getting us all talking about our favorite desiccation tolerator and potential restoration material.

Monday, June 24, 2013

BIOCRUST 2013, Madrid Day 1 Report

Arriving home after an all-nighter. Just joking! Actually, this is just how happy crust enthusiasts are to see others of their kind. We are heading out for dinner near the recently made-over Rio Manzanares. L-R: Chongfeng Bu, Jayne Belnap, Jayne's granddaughter Haylee (I'm guessing on spelling), Sasha Reed, Bettina Weber, Yunge Zhao, Nichole Barger, Sergio Velasco Ayuso, Ana Giraldo, Ferran Garcia-Pichel.


Many thanks to Leopoldo Sancho & Fernando Maestre and their respective labs for putting on a fantastic workshop on biological soil crusts in Madrid (aka BIOCRUST 2013). There were about 80 speakers and about 30 posters presented, and the organizers are working on compiling pdfs of all of these which will eventually be available here. Obviously Spain was well-represented, but we had a great international mix of researchers from France, Portugal, Germany, Poland, The US, The UK, Israel, Australia, Venezuela, New Zealand, Colombia, and others. An impressive development compared to the last workshop was the representation of our Chinese colleagues. Three different Chinese research groups were represented. Everyone I talked to enjoyed the short talks (10 minute slots). Also I liked that the posters were hung for the duration, so that every coffee break became a poster session. On the final day we had three proposals for the 2016 conference: 1. University of Queensland, Australia with an overnight field visit to Magnetic Island (Wendy Williams) , 2. Moab, Utah, USA (Jayne Belnap), 3. The Negev Desert, Israel (Eli Zaady). I think all of these ideas were winners, but Moab took the votes. 



Dinner, the night before the conference. 

A few day one highlights - 
Sasha Reed talked about effects of warming and increased precipitation frequency primarily on mosses.  The mosses nearly completely die-off due to high frequency, short duration hydration events. The use of infrared heating lamps sparked some discussion because they deliver not only a warming treatment but also a drying effect. In my opinion, real global warming will also come with drying...therefore the lamps are a reasonable simulation. Cristina Escolar followed this up perfectly with her results using passive warming chambers. The warming (and probably associated drying) is killing off lichens, and reducing production but increasing soil carbon. The authors think the carbon is from the decomposition of the lichens, and that in the long term sequestration potential will decrease.

There was considerable excitement when Nick Vandehey spoke about the Berkeley lab's capability of making C11, a short-lived radio-isotope, incubating crusts with labeled CO2, then producing an image displaying not only how much C was fixed, but also the spatial pattern of C-fixation.

Enrique Valencia spoke about his recently started project which manipulates crust biodiversity and two global change factors. It's like the Cedar Creek experiment in miniature - both in size and budget, a perfect model system.

Possibly the talk that sparked my personal interest the most on day one was Antonio Gallardo's. He looked at the effects of different lichen species on soil C and N species, soil microbiota (including ammonia oxidizers), and polyphenol chemicals. First he found that all lichens regardless of the species were more similar to each other in terms of their effects on the above mentioned variables than to either bare areas, or soil under grasses. When honing in just on the lichens they did have distinct influences on the soil biogeochemical cycling. It was Diploschistes diacapsis that exerted the most unique effects on most variable, and also this lichen that contained the most polyphenols. This suggests that the lichens influence soil microbial communities with their polyphenols, and therefore alter the biogeochemical cycling performed by the soil microbes.


Having some tapas in the city center before going to dinner.  (L-R: Anita Antoninka, Nichole Barger, Antonio Gallardo, Ferran Garcia-Pichel, Sasha Reed, Santi Soliveres, Manu Delgado, Sergio Velasco).

A little explanation: So, a man came in and wouldn't leave us alone until Ferran bought some flashing bows that you wear on your head. They came out for the photos.

Another footnote: apparently this restaurant was on Gordon Ramsey's reality TV show Kitchen Disasters. 

Conference attendees recreate Da Vinci's last supper.

This is made even more perfect by Sasha's glowing and blinking "halo", purchased for only 1 euro. Give her a break, she gave her talk that morning and its the night before her birthday. (L to R): Santi Soliveres, Antonio Gallardo, Ferran Garcia-Pichel, Sergio Velasco, Sasha Reed, Anita Antoninka, Bettina Weber, Manu Delgado.



Monday, June 3, 2013

New paper on Antarctic biocrusts

Biological soil crusts in continental Antarctica: Garwood Valley, southern Victoria Land, and Diamond Hill, Darwin Mountains region
Claudia Colesie, Maxime Gommeaux, T.G. Allan Green and Burkhard Büdel
Antarctic Science, http://journals.cambridge.org/action/displayAbstract?aid=8925976

Tuesday, May 28, 2013

Bryophytes Frozen Under a Glacier for 400 Years Can Come Back to Life | Surprising Science

This one's making the science news rounds...


Plants Frozen Under a Glacier for 400 Years Can Come Back to Life | Surprising Science



La Farge C, Williams KH, England JH. 2013. Regeneration of little Ice Age bryophytes emerging from a polar glacier with implications of totipotency in extreme environments, PNAS dpi:10.1073/pnas1304199110.


Sunday, December 30, 2012

Paper by Coe et al. recommended by Faculty of 1000

Faculty of 1000 is a panel of faculty members which recommends and ranks the best papers they have read in their fields, post-publication. It is sort of a post-publication peer review, and in addition to citation rates give an indication of the impact or quality a paper may have.

Scott Collins of University of New Mexico, a heavy hitter in dryland ecology specifically, and also the president of ESA has recommended Coe, K.K., Belnap, J., Sparks, J.P. 2012. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses. Ecology 93: 1626-36. This is really a great honor for the authors, and I am really psyched to see my very first study subject, Syntrichia caninervis, making it big.

Check out my previous post about related work by some of the same authors here. Also CO2 Science summarizes another related work here.



Plate 1.  (Left) A moss-dominated soil biocrust from the Colorado Plateau in western North America, and (right) a single shoot (height 1 cm) of the widespread biocrust moss Syntrichia caninervis. Photo credits: left, K. K. Coe; right, Lloyd Stark.


View the recommendation here:

Collins S: F1000 Prime Recommendation of [Coe KK et al., Ecology 2012, 93(7):1626-36]. Faculty of 1000, 18 Oct 2012; DOI: 10.3410/f.717955503.793460788. f1000.com/prime/717955503#eval793460788