A networking resource devoted to biological soil crusts and the researchers who study them. We will provide a means for international scientists to communicate, share their research, share important news and announcements, ask questions and find collaborators. We will also provide a space for informal writing on research, opinion, and ideas (now seeking posters!).
Showing posts with label recent papers. Show all posts
Showing posts with label recent papers. Show all posts

Monday, September 3, 2012

Inferring local competition intensity from patch size distributions: a test using biological soil crusts Bowker 2012 Oikos Wiley Online Library

Inferring local competition intensity from patch size distributions: a test using biological soil crusts Bowker 2012 Oikos Wiley Online Library

A recent one by Fernando and I.

I just finished posting several biocrust papers from 2012, there would have been more if more publishers used share buttons. Kudos to Wiley. Boo to ESA, Springer, Elsevier. Why wouldn't you embrace every tool for sharing the abstract of papers you've published? Wierd.

Anyway, I'll see if I can dig up more recent references and post them later.

A first record of biological soil crusts in the Cape Floristic Region

A first record of biological soil crusts in the Cape Floristic Region

Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics Chamizo 2011 European Journal of Soil Science Wiley Online Library

Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics Chamizo 2011 European Journal of Soil Science Wiley Online Library

Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition Belnap 2012 Ecohydrology Wiley Online Library

Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition Belnap 2012 Ecohydrology Wiley Online Library

Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert GodínezAlvarez 2011 Plant Biology Wiley Online Library

Germination, survival and growth of three vascular plants on biological soil crusts from a Mexican tropical desert GodínezAlvarez 2011 Plant Biology Wiley Online Library

Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultravioletB radiation Hui Physiologia Plantarum Wiley Online Library

Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultravioletB radiation Hui Physiologia Plantarum Wiley Online Library

An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability Laureen Drahorad 2012 Journal of Plant Nutrition and Soil Science Wiley Online Library

An electronic micropenetrometer (EMP) for field measurements of biological soil crust stability Laureen Drahorad 2012 Journal of Plant Nutrition and Soil Science Wiley Online Library

Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA Meadow 2012 FEMS Microbiology Ecology Wiley Online Library

Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA Meadow 2012 FEMS Microbiology Ecology Wiley Online Library

Wednesday, June 8, 2011

Recent literature on crusts

 Here's a couple papers that have landed in my inbox in the last few days:
 Sohrabi, M., Stenroos, S, Högnabba, F, Nordin, A., Owe-Larsson. 2011. Aspicilia rogeri sp. nov. (Megasporaceae) and other allied vagrant species in North America. Bryologist 114:178-189.


This one is a taxonomic paper passed on to me by Roger Rosentreter. Basically what the authors find is that what we thought was Aspicilia fruticulosa in North America, is actually a new taxon. The best thing about it is that it is named after Roger, Aspicilia rogeri. I like the familiarity of using his first name...now we have our friend Roger the human, and our new friend Roger the lichen. After all his work over the years on this fascinating and frustrating genus...he deserves it. The authors have some additional photos here.

Read, C.F., Duncan,D.H., Vesk, P.A., Elith, J. 2011. Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. Journal of Vegetation Science Doi: 10.1111/j.1654-1103.2011.01296.x

Cassia Read follows up one of the first landscape ecology studies of biocrusts with this one about passive recovery of crust after exclusion of livestock. It uses an unusually good gradient of time since disturbance. Also notable is that the more we collectively study this topic the more we find that recovery rates differ from place to place, as well as successional sequences.

Castillo-Monroy, A.P., Maestre, F.T., Rey, A., Soliveres, S., Garcia-Palacios, P. 2011. Biological soil crust microsites are the main contributor to soil respiration in a semiarid ecosystem. 
DOI: 10.1007/s10021-011-9449-3

The journal Ecosystems is turning out to be fertile ground for crust research. On a gyspiferous area with well developed crusts, the authors calculate that the biocrust is associated with about 40% of the soil respiration from the site.

Of course one reason I created this blog was to help disseminate my own research. I switched jobs in the last year so I've been sending out less stuff in the transition, but my collaborators have kept me looking good. Here's a few from 2011 and the latter part of 2010:

García-Palacios, P., Bowker, M.A., Maestre, F.T., Soliveres, S., Valladares, F, Papadopoulos, J., Escudero, A. 2011. Ecosystem development in roadside grasslands: biotic control, plant–soil interactions and dispersal limitations. Ecological Applications in press.

Pablo worked really hard for this one. Developing the structural equation model in this paper was like fighting the hydra...we'd solve one problem and create 2 more. But in the end it looks good, congratulations Pablo.

Miller, M.E., Belote, R.T., Bowker, M.A., Garman, S.L. 2011. Alternative states of a semiarid grassland ecosystem: Implications for erosion susceptibility, ecosystem services and management. Ecosphere 2 A55.

Back to the Colorado Plateau....this is part of my new job. One of my projects is related to state-and-transition models. In this paper we actually define an ecosystem state partially by the dominance by biological crusts.

Maestre, F.T., Bowker, M.A., Cantón, Y., Castillo-Monroy, A.P., Cortina, J., Escolar, C., Escudero, A., Lázaro, R. Martínez, I. 2011. Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. Journal of Arid Environments in press.

This is a review of all the varied crust research being conducted in Spain. It will appear in a special issue of Journal of Arid Environments devoted to Spain's semi-arid zone.

Bowker, M.A., Mau, R.L., Maestre, F.T., Escolar, C., Castillo, A.P. 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology doi: 10.1111/j.1365-2435.2011.01835.x.

In this paper we explore the simple idea of tabulating biocrust species and the ecosystem functions that the species tends to correlate with. We focused on the Spanish species. If you do this, you find little redundancy, most of the common species have a unique suite of functional effects. 

Castillo-Monroy, A.P., Bowker, M.A., Maestre, F.T., Rodríguez-Echeverría, S., Martinez, I., Barraza-Zepeda, C.E., Escolar, C. 2011. Relationships between biological soil crust, bacterial diversity and abundance and ecosystem functioning: Insights from a semi-arid Mediterranean environment. Journal of Vegetation Science 1:165-174.

Here we added some data on the microbial community to an existing study, and posed the question "How much of apparent crust function is actually mediated by their effects on soil microbiota?" At least in this site, the answer seems to be not much. This was part of Andrea's dissertation.

Eldridge, D.J., Bowker, M.A., Maestre, F.T., Alonso, P., Mau, R.L., Papadopoulos, J., and Escudero, A. 2010. Interactive effects of three ecosystem engineers on infiltration in a semi-arid mediterranean grassland. Ecosystems 13: 499-510.

I'm really happy with this study, and it's mostly thanks to Dave Eldridge. I hope to repay him with an equally good study this month in Australia. We studied the effects of crusts, rabbits and tussock grasses on infiltration in a regression-type design. The tussock grasses are infiltration sites (that was well known already). The rabbits have no direct effect, but they can nullify the crust effect. The crust effect can be positive, if mosses dominate, or negative if lichens dominate. All in all, a very cool system studied as an intact system, rather than breaking it into it's parts.

Saturday, May 28, 2011

"And the wind blows, the dust clouds darken the desert blue, pale sand and red dust drift across the asphalt trails and tumbleweeds fill the arroyos. Good-bye, come again."

The global dust cycle is the most important thing that most people have never heard of. Drylands emit sediment that can be transported long distances. In many cases this is an entirely natural phenomenon, e.g. ancient lake basins tend to be poorly vegetated due to salinity and tend to be full of transportable sediment. When they were lakes they trapped dust, now they expel it. These are often the dust hotspots of the world (e.g., Koren et al. 2006). Land use including tillage and grazing are also major contributors in other cases; desertification and dust emissions are tightly linked (Breshears et al. 2003). These disturbances can turn large areas into dust emitters. Drought, which we expect to be strongly affected by climate change, can also greatly enhance dust emissions across the board (Belnap et al. 2009). Thus, dust can be considered a secondary global change factor.

The obvious impact of dust emissions in rangelands is that fertility is leaving the site (Neff et al. 2005). The less obvious impacts occur sometimes halfway around the world. Some cities regularly experience crippling dust storms which impact human respiratory health and create blinding conditions on roadways. Beijing is an excellent example, where desertification-linked dust storms have gone from a decadal phenomenon to an annual one, even closing airports for days. In the southwest USA, an endemic fungus responsible for valley fever (a disease causing pheumonia-like symptoms) is transported in dust. Some of the more amazing impacts of dusts may be positive on a global scale, in terms of our prospects for sinking carbon. The two great photosynthetic engines of the Earth, the Amazon rainforest and the oceanic phytoplankton, are both subsidized by dust-borne nutrients from drylands (Fung et al. 2000, Koren et al. 2006, Mahowold 2010).

  • Beijing dust storm (Photo: Prof. Zev Levin, Dept. of Geophysics and Planetary Sciences, The Porter School of Environmental Studies, Tel Aviv, Israel)
Recently two excellent papers have appeared in Proceedings of the National Academy of Sciences about dust emissions and their impacts, and to a lesser degree the role of biocrusts as soil stabilizers.













Munson, S.M., Belnap, J., Okin, G.S. 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences 








Belnap, J., R. L. Reynolds, M. C. Reheis, S. L. Phillips, F. E. Urban, and H. L. Goldstein. 2009. Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA. Aeolian Research 1:27–43.

Breshears, D. D., J. J. Whicker, C. B. Zou, J. P. Field, and C. D. Allen.  2009. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance. Geomorphology 105: 28-38.

Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G., Bishop, J.K.B., 2000. Iron supply and demand in the upper ocean. Global Biogeochemical Cycles 14, 281–295.

Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C., Rudich, Y., Martins, J.V., Rosenfeld, D., 2006. The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters 1, 0140055.

Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M.A.J., Flanner, M.G., Hoffman, F.M., Lawrence, D.M., Lindsay, K., Mayewski, K.A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P.E., Zender, C.S., 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10, 10875–10893.

Neff, J. C., R. L. Reynolds, J. Belnap, and P. Lamothe. 2005. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecological Applications 15:87–95.