A networking resource devoted to biological soil crusts and the researchers who study them. We will provide a means for international scientists to communicate, share their research, share important news and announcements, ask questions and find collaborators. We will also provide a space for informal writing on research, opinion, and ideas (now seeking posters!).
Showing posts with label desertification. Show all posts
Showing posts with label desertification. Show all posts

Tuesday, February 4, 2014

Nice video explaining straw checkerboard dune stabilization


If you want to see the footprint of the massive dune stabilization work associated with this railroad, go to 37°29'22.94"N 105° 1'42.60"E in Google Earth. Zoom out enough so you can see the stabilized area near the rails and the unstabilized sand. Cool isn't it?

By the way, straw checkerboards lead to biocrust growth.

Wednesday, January 15, 2014

Colorado Arts & Sciences Magazine: Can biological soil crust communities be restored?

Nice, recent article on our biocrust restoration project on military lands (led by Nichole Barger with a team consisting of Ferran Garcia-Pichel, Ana Giraldo, Sergio Velasco, myself, Anita Antoninka, Jayne Belnap, Sasha Reed, & Mike Duniway) here.

Ana Giraldo tending her cyanobacterial cultures in the Garcia-Pichel lab (Arizona State University)

Thursday, January 2, 2014

Spray bacteria on the desert to halt its spread - environment - 02 January 2014 - New Scientist

Spray bacteria on the desert to halt its spread - environment - 02 January 2014 - New Scientist

This short article recently appeared in New Scientist. It's about the practice of using mass-cultured cyanobacteria to fix dunes in China, thus combatting desertification. I believe the cyanobacteria are temporally irrigated to establish them.

Saturday, June 1, 2013

The New Testament is on it's way


Remember this thing? Hopefully every biocrust enthusiast has one on their shelves. Mine is signed by Jayne, and I need to remember to bring it to Spain to collect autographs of Otto Lange and all the other contributors. Of course there were plenty of seminal papers and some pretty good reviews before, but this book (1st edition 2001) has become such a valuable one stop shopping source for crust information that many people have taken to referring to it as the crust bible.

Well, alot has happened since this publication. First, there's just more biocrust researchers which has alot to do with the publication of the crust bible. The subject matter of crust research has changed, for example we are now seeing biocrusts used as model organisms in ecology and more and more climate change research, and we are seeing more and more work on ecological restoration. The geography of the biocrust research community has shifted also. At the time this book was written, biocrust researchers were primarily based in the US, Germany, Israel, and Australia. Now, I think its fair to say that China accounts for at least half if not more of the biocrust research production. Also the emergence of biocrust research in Spain has also been impactful, and a sizable group based in France is also notable. Basically, many more people in many more places are contributing to the biocrust knowledge base. This is undeniably a good thing, but it means that the crust bible is a bit out of date. It needs and update, but more than that.....a sequel. A New Testament!

While there will be several contributors in common, the new book seems to be a bit of a youth movement. Some of the students of the original authors will contribute, in additional to several new contributors. Below is an outline as it stands now. I love the title. To me there seems to be a thinly veiled message: this is an extremely important thing that most of you desert scientists are not noticing, look down once in a while (eyes rolling).


Ecological Studies
Biological Soil Crusts: An Organizing Principle in Drylands
Ed. by B. Weber, B. Büdel and J. Belnap

Table of Contents

Part I: Introduction  
1 Biological soil crusts as a critical zone of global importance (J. Belnap, <jayne_belnap@usgs.gov>)
In this chapter, the concept of biocrusts as the critical zone in drylands will be presented. As these communities cover the soil surface in these regions, they mediate almost all materials entering and leaving the soil, thereby influencing most ecosystem processes including, hydrology, erosion protection, nutrient cycling, vascular plant nutrition and community composition. Their role in ecosystem services will be introduced in this opening chapter.
2 How biological soil crusts became studied as a community (O.L. Lange, <ollange@botanik.uni-wuerzburg.de>)
In this chapter, Professor Lange will describe the history of the first research on biocrusts: the recognition of the organisms as a community, the people who studied them and the techniques utilized.
Part II: Morphology, composition, and distribution of biological soil crusts at different scales
3 Fossil crusts: (H. Beraldi, <hberaldi@unam.mx>)
Biological soil crusts and their components have been identified as fossils from a wide range of rock types found in different parts of the world. In this chapter, these fossil findings will be described and their implications for the evolution of biocrusts and their components will be discussed.
4 Cyanobacteria and algae within biological soil crusts (B. Büdel, <buedel@rhrk.uni-kl.de>)
The diversity and functional roles of cyanobacteria and algae within biocrusts of different (climatic) regions will be described in this chapter. Reasons for variation and stability of taxonomic composition, as well as present and future determination methods will be discussed.
5 Fungi and bacteria within biological soil crusts (M. Grube, <martin.grube@uni-graz.at>)
Description of the diversity and functional roles of fungi and bacteria within biocrusts of different types and (climatic) regions. Present and future methods of determination methods will be discussed.
6 Bryophytes within biological soil crusts (H. Kürschner, <kuersch@zedat.fu-berlin.de>)
The diversity and functional roles of biocrust bryophytes in different habitats (soils, climate, vegetation type) will be described in this chapter. Advantages of a molecular approach in bryophyte identification will be discussed.
7 Lichens within biological soil crusts (M. Westberg, <Martin.Westberg@nrm.se>)
Description of the diversity and functional roles of biocrust lichens from different habitats (soils, climate, vegetation type). Advantages of molecular as compared to classical morphological identifcation methods will be discussed.
8 Microfauna within biological soil crusts (B. Darby, <brian.darby@UND.edu>)
Biocrusts are known to constitute an important habitat for microfauna such as nematodes, collembola, mites, springtails and snails. The diversity and potential functional roles of microfauna within biocrusts of different habitats will be described in this chapter.
9 Composition and structure of biological soil crusts (B. Büdel, <buedel@rhrk.uni-kl.de>)
The composition of biocrusts, comprising the organisms described in chapters 5 to 9, is influenced by climatic, pedogenic and successional parameters. This organism composition, but also macro- and microclimatic conditions as well as landuse patterns are known to influence the external morphology of biocrusts. The variation of biocrust composition and morphology and the resulting effects on ecosystem function will be described.
10 Controls on distribution patterns of biological soil crusts at the micro-, macro-, and global scale (M.A. Bowker, <Matthew.Bowker@nau.edu>)
Distribution patterns of biological soil crusts are determined by a variety of different abiotic factors, such as soil structure and chemistry, vegetation, and climate conditions. Distribution patterns will analyzed and described at different scales.
11 Long-term studies on different types of biological soil crusts (J. Belnap, <jayne_belnap@usgs.gov>)
Biocrusts and their components have been monitored at multiple sites for five to twenty years. Their growth, distribution patterns, and response to climate and vegetation changes give important insights into the long-term stability, development and structure of biocrusts.
12 Remote sensing of biological soil crusts at different scales (B. Weber, <b.weber@mpic.de>)
Imaging spectroscopy methods have been utilized to classify biocrusts within different types of remote sensing imagery. Aside from the classification of biocrusts at the macroscale, imaging spectroscopy has been used to differentiate between different types of biocrusts and also different land use intensities have been differentiated by means of remote sensing techniques.
Part III: Functional roles of biological soil crusts
13 Microstructure and weathering processes within biological soil crusts (F. Garcia-Pichel, <ferran@asu.edu>)
Biological soil crust organisms have been shown to influence the microstructure of the soil and cause weathering processes within the upper soil matrix. These processes, depending on the type of biocrust organisms present, as well as the initial soil composition and structure, will be described in this chapter.
14 Nitrogen cycling of biological soil crusts at micro- macro-, and global scales (N. Barger, <Nichole.Barger@Colorado.EDU>)
Many cyanobacteria and cyanobacterial lichens in biocrusts fix atmospheric nitrogen. This newly fixed nitrogen has three pathways: some is nitrified or denitrified within the biological soil crust, some is leached into underlying soils, and a third part is released into the atmosphere as NO and N2O. The different sinks of biocrusts have been shown to differ among them, depending on the N-content of the soil, temperature, soil texture and water status. New studies at the global, ecosystem and micro-scales will be presented. Future research methods and questions regarding this highly relevant field of research will also be analyzed.
15 Carbon budgets of biological soil crusts at micro- macro-, and global scales (L. Sancho, <sancholg@farm.ucm.es>)
During the last few years there have been several long-term studies determining the C-budget of biocrusts at the micro- and the mesoscale. These investigations have been conducted at sites within different climatic regions and on several continents. Synthesizing these data promises a big step towards more precise calculations of long-term nutrient fluxes. Apart from these field studies, a global modelling analysis of C-fixation accomplished by biocrusts will be presented in this chapter.
16 Biological soil crusts as soil stabilizers (J. Belnap, <jayne_belnap@usgs.gov>)
Where the biomass of biocrusts is sufficient, they stabilize soils, decreasing both wind and water erosion. They also capture dust, which contains nutrients. Thus, in addition to fixing nitrogen (Chap 14) and carbon (Chap 15) they influence soil fertility in other ways
17 Effects of biological soil crusts on arid land hydrology (S. Chamizo, <scd394@ual.es>)
Biological soil crusts are well-known to affect soil hydrology of arid lands in a complex and non-uniform manner. The effect of biocrusts on infiltration and runoff appear dependent on crust composition, external morphology, soils, site characteristics (e.g., slope), vegetative cover, and macroclimatic conditions. During the last decade, there have been many new insights, which will be presented here.
18 Response of biological soil crust organisms to light, temperature, and water conditions (T.G.A. Green, <greentga@waikato.ac.nz>)
Biocrusts consist of poikilohydric organisms, which passively outlast dry conditions to resurrect again upon favourable water conditions. During the last years they have been shown to adapt to varying light, water and temperature conditions within their environment. Their ability to adapt seems to depend on the overall plasticity of individual crust organisms. The great variability in adaptation potential of different crust organisms will be discussed here.
Part IV: Interactions between biological soil crusts and vascular plants
19 Interactions of biological soil crusts with vascular plants (Y. Zhang, <zhangym@ms.xjb.ac.cn>)
Whereas a nutrient transfer between biocrusts and vascular plants has been assumed in many studies, evidence proving this has only recently been obtained. Several studies have now shown that both C and N can be moved from biocrusts to plants and from plants to biocrusts via fungal hyphae.
Aside from this nutrient transfer, biocrusts have been shown to affect seed retention, germination and plant emergence of vascular plants. Plants adapted to biological soil crust habitats were observed to have smooth seeds (thus lacking appendages), which may facilitate their ability to slip into cracks in the biocrusts. Thus, biological soil crusts have a profound impact on plant structure and communities within arid environments.
20 Biological soil crusts as model to study plant interactions and functional roles (F. Maestre, <fernando.maestre@urjc.es>)
In this chapter, the authors explore how biocrusts of deserts and many other ecosystems may serve as a useful model system for studying multiple questions of interest in community and ecosystem ecology, including biodiversity-ecosystem function relationships, the interplay between positive and negative interactions along environmental gradients, the source-sink hydrological dynamics in drylands, and the role of attributes of biotic communities as modulators of ecosystem responses to global environmental change. To illustrate their views, they synthesize recent and ongoing studies. They complete the synthesis of the studies conducted so far with recommendations for promoting the use of biocrusts by community and ecosystem ecologists, and with a list of priorities for future research on this topic.
Part V: Threats to biological soil crusts
21 Effects of surface disturbance on biological soil crusts (E. Zaady, <zaadye@volcani.agri.gov.il>)
Surface disturbances (e.g., mechanical disturbance, herbicides, fire) all can have severe effects on biological soil crust composition and its physiological activity. Studies of these effects will be discussed in this chapter.
Herbicides, functioning as photosynthesis inhibitors, have been shown to kill cyanobacteria and soil algae, resulting in a decrease in polysaccharide production and biomass.  This, in turn, can lead to a reduction in organic matter and increased soil and nutrient loss through erosion. The detrimental effects of herbicides on biocrusts will be investigated on different time-scales within this chapter.
22 Effects of climate change on biological soil crusts (S. Reed, <screed@usgs.gov>)
The effects of climate change on biological soil crusts are expected to be complex. An increase in temperature will reduce soil moisture, especially at the soil surface. Future changes in precipitation amount and patterns will vary between different regions. In areas with fewer precipitation events and lower total amounts of rainfall, biological soil crust coverage is expected to decrease and composition is predicted to shift towards more early-successional biocrust types. As most processes (e.g., nitrogen and carbon fixation) are temperature and moisture dependent, these will be affected as well. On the other hand, arid and semi-arid regions are known to expand and the increased melting rate of glaciers exposes bare soil surfaces, which serve as an ideal habitat for biocrusts to colonize. Thus, the effects of climate change on biocrusts are expected to be variable.
Part VI: Natural and Enhanced Recovery and Management
23 Natural recovery of biological soil crusts after disturbance (B. Weber, <b.weber@mpic.de>)
Natural recovery of biological soil crusts after disturbance has been studied both in descriptive and experimental studies. Whereas many investigations have shown that biocrusts need decades, if not centuries, to completely recover after disturbance, other studies reveal that biocrusts show significant recovery after only a few years. In this chapter, we will examine the data to find the factors (e.g., crust composition, soil, climate, disturbance type) that predict recovery rates.   
24 Enhanced recovery of biological soil crusts after disturbance (Y. Zhao, <zyunge@ms.iswc.ac.cn>)
Different methods to enhance biological soil crust recovery after disturbance have been experimentally investigated. These have included stabilization of the soil surface with polyacrylamide gels, inoculation of disturbed sites with cyanobacterial cultures or field-collected material, and shade structures. These efforts have been differentially successful, and factors leading to success will be discussed.
Part VII: Future Research on biological soil crusts
25 Synthesis on biological soil crust research (B. Weber, <b.weber@mpic.de>)
In the final synthesis chapter, we will summarize the essential new findings regarding the different topics of biocrusts. Additionally, we will identify knowledge gaps and promising new fields of research. We will call for unified approaches to biocrust research and linking of researchers and sites in order to answer pressing questions. 

Thursday, December 20, 2012

BIOCRUST 2013 (Madrid) Third Circular, get your abstracts in by Dec. 31

Below is the latest on the biocrust meeting in Spain next year. I've been told that over 30 abstracts have been received so far. The deadline was extended to 31 December.  Also the plenary talks are now scheduled, and I'm happy to be doing one of them:

Third circular, 12 December 2012

We are pleased to announce the Second International Workshop on Biological Soil Crust, which follows the successful first Workshop celebrated in Germany in 2010. This workshop is devoted to disseminate recent advances in our knowledge of the ecology of biological soil crusts (BSCs) and their importance as a key driver of ecosystem structure and functioning.

The main objective of this Workshop is to trigger an exchange of ideas and results, to discuss possible new theories/approaches, and to provide a forum to facilitate the collaboration among the growing international community of scientists working with BSCs.

This international meeting will take place at the Faculty of Pharmacy, The Complutense University, Madrid, Spain, between 10th and 13rd of June, 2013. The meeting will cover any aspect related to BSCs, including the following topics:
• Diversity, ecology and biogeography of BSCs
• Mapping, monitoring and management of BSCs
• Role of BSCs in ecosystems
• Taxonomy of BSC constituents
• Disturbance and restoration of BSCs
• Interaction between BSCs and vascular plant vegetation
• Effects of global environmental change on BSCs

The meeting will include invited plenary talks, contributed oral sessions, poster sessions, a field trip and some open, informal sessions to facilitate the exchange of ideas and protocols on key issues surrounding BSC ecology.
 
Venue
The Complutense University (http://portal.ucm.es/en/web/en-ucm) is one of the largest Universities in Spain. Located in the historic Ciudad Universitaria/Moncloa Campus, it is easily accessible from anywhere in Madrid from Metro and Bus. The venue of the meeting (Faculty of Pharmacy) is just 20 m from a metro station.
 
Scientific committee
Jayne Belnap, United States Geological Service (USA)
Matthew A. Bowker, Northern Arizona University (USA)
Burkhard Büdel, University of Kaiserslautern (Germany)
David Eldridge, University of New South Wales (Australia)
Ferran García-Pichel, Arizona State University (USA)
Fernando T. Maestre, Rey Juan Carlos University (Spain)
Leopoldo G. Sancho, Complutense University (Spain)
Eli Zaady, Ministry of Agriculture (Israel)
Local organizing committee
Beatriz Gozalo, Rey Juan Carlos University
Allan Green, Complutense University
Fernando T. Maestre, Rey Juan Carlos University
José Raggio, Complutense University
Victoria Ochoa, Rey Juan Carlos University
Ana Pintado, Complutense University
Mª Dolores Puche, Rey Juan Carlos University
Leopoldo G. Sancho, Complutense University
 
Program
10.6. Arrival, registration, workshop sessions (morning and afternoon).

11.6. Workshop sessions (morning and afternoon).

12.6. Field trip to the Guadarrama Mountain Range (8:00 – 16:00 h). Informal discussion 
session in a field station in the mountains (16:00 – 18:00 h). Conference dinner in the Botanical Gardens of the University.

13.6. Workshop sessions (morning), departure after lunch.
 
Plenary speakers are now confirmed (the title of the talks is tentative):
Dr. Matthew A. Bowker, Assistant Professor, Northern Arizona University. Topic of his talk: “Biological soil crusts as a model system on community and ecosystem ecology”. 

Dr. Burkhard Büdel, Professor, University of Kaiserslautern. Topic of his talk: “Soil Crust InterNational (SCIN) – Understanding and valuing biological soil protection of disturbed and open land surfaces”.

Dr. Steve Pointing, Professor, Auckland University of Technology. Topic of his talk: “Understanding microbial contributions to ecosystem-wide patterns and processes in extreme environments”.

Abstract submission
Abstract submission will be open from 20 September 2012 to 31 December 2012.
Authors are invited to present regular talks, short ideas and/or posters at the meeting. Regular contributions will be talks of 15 minutes + 5 minutes discussion each. Short notes/ideas can be presented in 5 minute talks (+ 3 minutes discussion). Poster sessions will also take place the first two days of the meeting.

For all the contribution types, please submit abstracts by e-mail (to iibscworkshop@gmail.com) using this template and indicate, if you wish to present a regular contribution, a short note or a poster. Please note that the number of slots available for regular and short talks is limited, and we may not be able to accommodate all the requests for talks we may have.
 
The template for the abstract can be found available in the webpage of the meeting.
 
Registration and fees
The registration will be open from 1 January 2013 to 30 April 2013.
Conference fees:
240 € regular participants
120 € students

The fees include the documentation, the lunches of three days, the field trip and the conference dinner. Payment of the fees will be done by either credit card or bank transfer, using the registration form available here and in the webpage of the meeting. Once filled in you must submit the form directly by fax or e-mail to the General Foundation UCM (e-mail address and fax number are in the template). Please do not send it to us.
 
Travel Information
Madrid, the Spanish capital, is a vibrant city with world class museums, monuments, and restaurants, and with a famous night and cultural life. Madrid can be easily reached by plane from anywhere in the world. Flights arrive to Barajas airport, from where the city centre can be reached by metro, train ("Cercanías"), bus or taxi. The best way to arrive to the meeting from the city center is by Metro or bus. A metro map and travel itinerary planner can be found here.

Participants are free to book the accommodation of their choice, as there are plenty of options within Madrid, from cheap hostels to luxury hotels. We are making arrangements with a travel agency, which will offer some hotels at a discounted price for participants. We will update details on how to book through them in the next circular.
 
For general travelling and tourism information please visit:
http://www.esmadrid.com/en/portal.do (Touristic information on Madrid and schedule of cultural events going out in the city)
http://www.spain.info/en_US/ (General touristic information)
http://www.aena.es/csee/Satellite/Home/en/Page/1166792871783/ (Information on flights going to the Barajas airport, the main airport in Madrid)
Important dates
 
Abstract submission: Abstract submission will be from 20 September 2012 to 31 December 2012.
Notification of abstract acceptance: 30 January 2013
Registration: 1 January 2013 – 30 April 2013
Workshop: 10 – 13 June 2013
We hope to see you all at Madrid in 2013!
Fernando T. Maestre (fernando.maestre@urjc.es) and Leopoldo G. Sancho (sancholg@farm.ucm.es)

Saturday, May 28, 2011

"And the wind blows, the dust clouds darken the desert blue, pale sand and red dust drift across the asphalt trails and tumbleweeds fill the arroyos. Good-bye, come again."

The global dust cycle is the most important thing that most people have never heard of. Drylands emit sediment that can be transported long distances. In many cases this is an entirely natural phenomenon, e.g. ancient lake basins tend to be poorly vegetated due to salinity and tend to be full of transportable sediment. When they were lakes they trapped dust, now they expel it. These are often the dust hotspots of the world (e.g., Koren et al. 2006). Land use including tillage and grazing are also major contributors in other cases; desertification and dust emissions are tightly linked (Breshears et al. 2003). These disturbances can turn large areas into dust emitters. Drought, which we expect to be strongly affected by climate change, can also greatly enhance dust emissions across the board (Belnap et al. 2009). Thus, dust can be considered a secondary global change factor.

The obvious impact of dust emissions in rangelands is that fertility is leaving the site (Neff et al. 2005). The less obvious impacts occur sometimes halfway around the world. Some cities regularly experience crippling dust storms which impact human respiratory health and create blinding conditions on roadways. Beijing is an excellent example, where desertification-linked dust storms have gone from a decadal phenomenon to an annual one, even closing airports for days. In the southwest USA, an endemic fungus responsible for valley fever (a disease causing pheumonia-like symptoms) is transported in dust. Some of the more amazing impacts of dusts may be positive on a global scale, in terms of our prospects for sinking carbon. The two great photosynthetic engines of the Earth, the Amazon rainforest and the oceanic phytoplankton, are both subsidized by dust-borne nutrients from drylands (Fung et al. 2000, Koren et al. 2006, Mahowold 2010).

  • Beijing dust storm (Photo: Prof. Zev Levin, Dept. of Geophysics and Planetary Sciences, The Porter School of Environmental Studies, Tel Aviv, Israel)
Recently two excellent papers have appeared in Proceedings of the National Academy of Sciences about dust emissions and their impacts, and to a lesser degree the role of biocrusts as soil stabilizers.













Munson, S.M., Belnap, J., Okin, G.S. 2011. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proceedings of the National Academy of Sciences 








Belnap, J., R. L. Reynolds, M. C. Reheis, S. L. Phillips, F. E. Urban, and H. L. Goldstein. 2009. Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA. Aeolian Research 1:27–43.

Breshears, D. D., J. J. Whicker, C. B. Zou, J. P. Field, and C. D. Allen.  2009. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance. Geomorphology 105: 28-38.

Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G., Bishop, J.K.B., 2000. Iron supply and demand in the upper ocean. Global Biogeochemical Cycles 14, 281–295.

Koren, I., Kaufman, Y.J., Washington, R., Todd, M.C., Rudich, Y., Martins, J.V., Rosenfeld, D., 2006. The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters 1, 0140055.

Mahowald, N.M., Kloster, S., Engelstaedter, S., Moore, J.K., Mukhopadhyay, S., McConnell, J.R., Albani, S., Doney, S.C., Bhattacharya, A., Curran, M.A.J., Flanner, M.G., Hoffman, F.M., Lawrence, D.M., Lindsay, K., Mayewski, K.A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P.E., Zender, C.S., 2010. Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics 10, 10875–10893.

Neff, J. C., R. L. Reynolds, J. Belnap, and P. Lamothe. 2005. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecological Applications 15:87–95.